
Motion Planning for Steep Hill Climbing

Damion Dunlap, Wei Yu, Emmanuel G. Collins Jr., and Charmane V. Caldwell

Abstract— The motors or engines of an autonomous ground
vehicles (AGV) have torque and power limitations, which limit
their abilities to climb steep hills, which are defined to be
hills that have high grade sections in which the vehicle is
forced to decelerate. Traversal of a steep hill requires the
vehicle to have sufficient momentum before entering the hill.
This problem is part of a larger class of momentum-based
motion planning problems such as the problem of lifting heavy
objects with manipulators. Hence, solutions to the steep hill
climbing problem have much wider applicability. The motion
planning here is accomplished using a dynamic model of the
skid-steered AGV used in the experiments along with Sampling
Based Model Predictive Control (SBMPC), a recently developed
input sampling planning algorithm that may be viewed as
a generalization of LPA? to the direct use of kinodynamic
models. The motion planning is demonstrated experimentally
using two scenarios, one in which the robot starts at rest at
the bottom of a hill and one in which the robot starts at rest
a distance from the hill. The first scenario requires the AGV
to first reverse direction so that the vehicle can gather enough
momentum before reaching the hill. This corresponds to having
the vehicle begin at a local minimum, which results in a problem
that many traditional model predictive control methods cannot
solve. It is seen that, whereas open loop trajectories can
lead to vehicle immobilization, SBMPC successfully uses the
information provided by the dynamic model to ensure that the
AGV has the requisite momentum.

I. INTRODUCTION

Recent years have seen a growing interest in the use
of dynamic models in motion planning. The concept of
kinodynamic planning was initially presented in [1]. The
methodologies vary, but are usually based on either the
randomized sampling-based approach presented by LaValle
and Kuffner in [2] or potential field functions similar to
those presented in [3]. This paper describes a particular
motion planning problem that benefits greatly from the use
of a dynamic model. Particularly, it concerns developing
trajectories for climbing steep hills, which are defined to be
hills that have high grade sections in which the vehicle is

D. Dunlap is with the Automation & Dynamics Branch, Littoral Warfare
Science & Technology Department of the US Naval Surface Warfare Center
Panama City Division, USA damion.d.dunlap@navy.mil

W. Yu and E. Collins are with the Center for Intelligent Systems, Control
and Robotics (CISCOR) and the Department of Mechanical Engineering,
Florida A&M University-Florida State University, Tallahassee, FL 32310,
USA {yuwei, ecollins}@eng.fsu.edu

C. Caldwell is with CISCOR and the Department of Electrical Engi-
neering, Florida A&M University-Florida State University, Tallahassee, FL
32310, USA cvcaldwe@eng.fsu.edu

This work was supported by the U.S. Army Research Laboratory un-
der the Robotics Collaborative Technology Alliance program, Cooperative
Agreement W911NF-10-2-0016, and by the National Science Foundation
under award CMMI-0927040.

forced to decelerate due to the torque and power limitations
of the vehicle motors or engine. For problems of this type
it is essential that the planner ensures that the vehicle has
the necessary momentum to traverse the hill. The required
momentum can be computed using a dynamic model of the
vehicle that includes the limitations of the vehicle actuation.

The steep hill climbing problem is part of a larger class
of motion planning problems that depend upon momentum.
For example, the problems of traversing a stretch of viscous
mud or traveling over an area of high, stiff vegetation may
share these momentum requirements. Another momentum
planning problem involves a manipulator lifting a heavy
weight, defined here to be a weight for which the workspace
of the manipulator is limited if the manipulator moves quasi-
statically. It follows that solutions to the steep hill climbing
problem are expected to find applications in a variety of
important motion planning tasks.

This research incorporates a motion planning algorithm
called Sampling Based Model Predictive Control (SBMPC)
[4], [5]. SBMPC allows planning with kinodynamic models
and here is used to plan using a relatively complex dy-
namic model. Like more standard versions of Model Pre-
dictive Control (MPC), SBMPC simultaneously determines
the optimal control input trajectory and the corresponding
(kinematically or dynamically feasible) vehicle trajectory. As
its name implies, SBMPC depends on sampling, particularly
sampling the system inputs, and is essentially an extension
of LPA? [6] to kinodynamic models. SBMPC’s name derives
from the fact that its development was motivated by MPC
and it can be used to solve MPC problems with nonlinear
models and/or constraints, including problems outside the
realm of robotics.

This paper experimentally demonstrates motion planning
for steep hill climbing of a skid-steered robot. The hill in
these experiments has constant slope, i.e., it is a ramp. In
one of the two cases considered, the robot begins at rest at
the bottom of the hill and must back up in order to give
the vehicle time to accelerate to the momentum needed to
traverse the hill. Hence, the robot begins at a local minimum,
resulting in an optimization problem which many traditional
MPC approaches cannot solve. Due to SBMPC’s roots in
LPA?, it is able to solve local minimum problems and is
shown to successfully compute a trajectory up the hill.

To our knowledge the problem of motion planning for
steep hill climbing has not been considered in prior literature.
However, the research of [7] considers the problem of using
MPC to follow a given trajectory up steep slopes. The

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
MAY 2011 2. REPORT TYPE

3. DATES COVERED
 00-00-2011 to 00-00-2011

4. TITLE AND SUBTITLE
Motion Planning For Steep Hill Climbing

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
US Naval Surface Warfare Center,Automation & Dynamics Branch,
Littoral Warfare ,Science & Technology Department,Panama
City,FL,32407

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
Presented at the IEEE International Conference on Robotics and Automation, Shanghai, China, May 9-13,
2011

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

9

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

trajectories are planned in advance without an awareness of
the actuator limitations and it is hence possible that a given
trajectory is not feasible. The results show improvement over
using a kinematic model, but are limited to simulations.

The paper is organized as follows. Section II describes the
dynamic model used in this research, which was developed
in [5] and emphasizes important model features that enable
it to be used for motion planning in general and the steep
hill climbing problem in particular. Section III provides a
brief review of the basic SBMPC algorithm and discusses
modifications that make it more efficient for problems of
the type considered here. Section IV presents experimental
results that demonstrate that trajectories generated without
taking into account the actuator limitations may result in
vehicle immobilization, while SBMPC is able to generate
feasible trajectories. Finally, Section V presents conclusions
and future work.

II. DYNAMIC MODEL FOR 3D HILL CLIMBING

This section describes the dynamic model of a skid-steered
wheeled vehicle that was developed and experimentally ver-
ified in [8]. The presentation emphasizes the importance of
using a closed-loop model (i.e., one that includes the motor
speed controllers) to reduce the uncertainty of the tire/ground
interaction, the inclusion of the motor limitations, and the
ability of the model to predict deceleration when climbing a
steep hill.

A. Dynamic Model for 3D Linear Motion

Fig. 1 is the free body diagram of a skid-steered wheeled
vehicle. It is assumed that the surface elevation is described
by Z = f(Y) such that the left and right front wheels
experience the same elevation and likewise for the rear
wheels. Let β denote the angle between the global coordinate
axis Y and the body-fixed axis yr (which can be determined
analytically from Z = f(Y)), W the weight of vehicle,
fr r the rolling resistance of the right wheels, and Fr the
traction force that acts on the vehicle. The left wheel forces
are identical to those of the right wheels and are not shown
in Fig. 1.

Fig. 1. Free-body diagram for vehicle hill climbing

The 3D dynamic model for linear hill climbing [8] is given

by [
mr2

4 + r2I
αB2

mr2

4 −
r2I
αB2

mr2

4 −
r2I
αB2

mr2

4 + r2I
αB2

]
q̈ +

[
τl Res
τr Res

]
+

[
mgr sin β

2
mgr sin β

2

]
=

[
τl
τr

]
, (1)

where m and I are respectively the mass and moment of
inertia of the vehicle, α is a terrain-dependent parameter (= 1
for linear motion as assumed here), B is the vehicle width, r
is the wheel radius, q = [θl θr]

T is the angular displacement
of the left and right wheels, τl Res = rfl r is the resistance
torque of the left wheel, τr Res = rfr r is the resistance
torque of the right wheel, τl = rFl is the applied torque of
the left motor, and τr = rFr is the applied torque of the
right motor.

B. Closed-loop Control System

The dynamic model (1) is an essential part of the predic-
tion model used for motion planning. However, no matter
how accurate the analysis, the model still has uncertain
parameters, e.g., the coefficient of rolling resistance. In this
research, the closed-loop control model is utilized to predict
motion as shown in Fig. 2, since the feedback system can
reduce the effects of the model uncertainty [8]. The PID
controller is used for speed control of the left or right side
wheels, and the vehicle dynamics and the interaction of the
vehicle with the terrain are described by (1).

Fig. 2. The closed-loop control system for the left or right side of a
skid-steered wheeled vehicle.

1) Modeling the Motor Limitations: The motor controller
block outputs the current Im to the motor and was configured
to enforce the current constraint,

Im < Imax, (2)

where Imax represents the maximum current allowable be-
fore the motor is in danger of overheating. Also, for the
Maxon 4-Q-DC motor controller used in this research the
maximum output voltage Vm,max varies with the current Im
and is governed by

Vm max = PWM · (VCC − Uloss)−
∆nm

∆τm
KT Im

Kn
, (3)

where PWM is the pulse-width modulation maximum duty
cycle, VCC is the battery supply voltage, Uloss is the voltage
loss in the motor controller, ∆nm/∆τm is the speed-torque
gradient of the motor, and Kn is the speed constant.

The motor block included the speed vs. current curve for
a DC motor [9], which is of the form

ωm = −aIm + b(Vm), (4)

where ωm is the angular velocity of the motor, a > 0 is
a constant motor parameter, and b(Vm) is a function that
changes monotonically with the motor voltage Vm.

Due to the current constraint (2) of the motor block, the
torque τm for the motors on each side of the vehicle is
constrained by

τm ≤ τmax = KT Imaxgrη, (5)

where KT is the torque constant, gr is the gear ratio and η
is the efficiency. The power Pm of the motors on each side
of the vehicle is constrained by

τmωm = Pm ≤ Pmax = Vm maxIm, (6)

where Vm max is given by (3). Note that Pmax is not
constant, but varies with the current Im.

In the research platform of Fig. 8 the DC motor is a
Pittman GM 9236. Based on the specifications for the motor,
Imax = 5.5 A. By employing the appropriate numerical
values for the parameters in (3), (6) results in the Pmax vs.
Im curve of Fig. 3. The square symbol in Fig. 3 represents
the largest possible output power for one side of the vehicle,
which is 51 W.

Generally speaking, the torque limit constraint (5) is what
causes deceleration when climbing a steep hill, while the
power constraint (6) limits the speed of the vehicle while
traveling on either horizontal or sloped terrains. The speed
limitations are expected to be particularly important when
planning minimum time paths on undulating terrain.

Fig. 3. Maximum power vs. current for the motor controller.

2) Comparison of Open-Loop and Closed-Loop Model-
ing: Fig. 4 shows comparisons of both the closed-loop and
open-loop experimental and simulation velocity results for
the modified Pioneer 3-AT1 shown in Fig. 8 and demonstrates
the advantage of using the closed-loop system for velocity
prediction instead of the open-loop system. The vehicle is
commanded at an acceleration of 1 m/s2 to a velocity of
0.2 m/s for straight-line movement on the lab vinyl surface.
Predictions using the closed-loop model closely match the
experimental results, whereas when the torques from the
closed-loop experiment were used to drive the open-loop
model, the prediction error is significant and increases over
time. Hence, the closed-loop model is used here for motion
planning.

Fig. 4. Comparison of the open-loop and closed-loop vehicle velocities
when the vehicle is commanded to 0.2 m/s for straight-line movement on
the lab vinyl surface

C. Ability of the Closed-Loop Model to Predict Deceleration

The closed-loop model was used to predict the behavior
of the vehicle when traversing hills of constant slope (i.e.,
β in Fig. 1 is constant). These simulated predictions were
compared with the experimental results. There was generally
a close correlation between the simulation and experimental
results, an illustration of which is given in Fig. 5. This figure
shows the ability of the closed-loop model to predict the
deceleration due to the motor torques saturating at 6.2 Nm.

III. SAMPLING BASED MODEL PREDICTIVE
CONTROL

SBMPC is a novel approach that allows real time motion
planning that uses the vehicle’s nonlinear model and avoids
local minima. The method employs an MPC type cost
function and optimizes the inputs, which is standard in the
control community. Instead of using traditional numerical
optimization, SBMPC applies sampling and a goal-directed
(A∗-type) optimization, which are standard in the robotic
and AI communities. This section provides a brief overview
of the methods from which SBMPC was derived. It then

1This Pioneer 3-AT contains a control system designed and implemented
in the research lab rather than the original control system.

Fig. 5. Closed-loop vehicle velocity and torque comparison when com-
manded linear velocity=1.2 m/s with 0.49m/s initial velocity for wood-board
hill climbing with slope β = 15.0◦

describes the SBMPC cost function and outlines the SBMPC
algorithm. Next, it disusses the benefits of SBMPC. Finally,
it describes how SBMPC was specialized to the steep hill
climbing problem. This brief presentation of the SBMPC
algorithm does not attempt to completely describe the algo-
rithm but to give an overview of the approach that focuses
on the principles upon which the algorithm was developed.
The specifics of the algorithm are presented in [5].

A. Model Predictive Control

Introduced to the process industry in the late 1970s [10],
Model Predictive Control (MPC) is a mixture of system
theory and optimization. It is a control method that finds
the control input by optimizing a cost function subject to
constraints. The cost function calculates the desired control
signal by using a model of the plant to predict future plant
outputs. MPC generally works by solving an optimization
problem at every time step k to determine control inputs
for the next N steps, known as the prediction horizon. This

optimal control sequence is determined by using the system
model to predict the potential system response, which is
then evaluated by the cost function J . Most commonly, a
quadratic cost function minimizes control effort as well as
the error between the predicted trajectory and the reference
trajectory r. The prediction and optimization operate together
to generate sequences of the controller output u and the
resulting system output y. In particular, the optimization
problem is

min J =
N∑
i=1

‖r(k + i)− y(k + i)‖2Q +
M−1∑
i=0

‖∆u(k + i)‖2S
(7)

subject to the model constraints,

x(k + i) = f (x(k + i− 1), u(k + i− 1)) (8)
y(k + i) = g (x(k + i)) (9)

and the inequality constraints,

Ax ≤ b
C(x) ≤ 0

ul ≤ u(k + i) ≤ uu
(10)

Traditional MPC has typically been computationally slow
and often incorporates only simple linear models.

B. Sampling Based Motion Planning

Sampling-based motion planning algorithms include
Rapidly-exploring Random Tree (RRTs) [11], probability
roadmaps [12], and randomized A? algorithms [13]. A com-
mon feature of each of those algorithms to date is that they
work in the output space of the robot and employ various
strategies for generating samples (i.e., random or pseudo-
random points). In essence, as shown in Fig. 6, sampling-
based motion planning methods work by using sampling to
construct a tree that connects the root with a goal region.
The general purpose of sampling is to cover the space so
that the samples are uniformly distributed, while minimizing
gaps and clusters [14].

Fig. 6. A tree that connects the root with a goal region.

C. Goal Directed Optimization

There is a class of discrete optimization techniques that
have their origin in graph theory and have been further
developed in the path planning literature. In this paper these
techniques will be called goal-directed optimization and refer

to graph search algorithms such as Dijkstra’s algorithm and
the A?, D?, and LPA? algorithms [15], [16]. Given a graph,
these algorithms find a path that optimizes some cost of
moving from a start node to some given goal. Although
not commonly recognized, goal-directed optimization ap-
proaches are capable of solving control problems for which
the ultimate objective is to generate an optimal trajectory and
control inputs to reach a goal (or set point) while optimizing
a cost function; hence, they apply to terminal constraint
optimization problems and set point control problems.

D. The SBMPC Optimization Problem

SBMPC overcomes some of the shortcomings of tradi-
tional MPC by sampling the input space as opposed to
sampling the output space as in traditional sampling-based
motion planning methods. The need for a nearest-neighbor
search is eliminated and the local planning method (LPM) is
reduced to the integration a system model and therefore only
generates outputs that are achievable by the system. To un-
derstand the relationship between sampling-based algorithms
and MPC optimization, it is essential to pose sampling-based
motion planning as an optimization problem. To illustrate this
point, note that , subject to the constraints of the sampling,
a goal-directed optimization algorithm can effectively solve
the mixed integer nonlinear optimization problem,

min
{u(k),...,u(k+N−1)},N

J =

N∑
i=0

‖ y(k+ i+ 1)−y(k+ i) ‖Q(i)

+

N−1∑
i=0

‖ ∆u(k + i) ‖S(i) (11)

subject to the system equations,

x(k + i) = f(x(k + i− 1), u(k + i− 1)), (12)
y(k) = g(x(k)), (13)

and the constraints,

‖ y(k +N)−G ‖ ≤ ε, (14)
x(k + i) ∈ Xfree ∀ i ≤ N, (15)
u(k + i) ∈ Ufree ∀ i ≤ N, (16)

where ∆u(k + i) = u(k + i) − u(k + i − 1), Q(i) ≥ 0,
S(i) ≥ 0, and Xfree and Ufree represent the states and
inputs respectively that do not violate any of the problem
constraints. The term ‖ y(k + i + 1) − y(k + i) ‖Q(i)

+ ‖ ∆u(k + i) ‖S(i) represents the edge cost of the
path between the current predicted output y(k + i) and the
next predicted output y(k + i + 1). The goal state G is
represented as a terminal constraint as opposed to being
explicitly incorporated into the cost function. Goal-directed
optimization methods implicitly consider the goal through
the use of a function that computes a rigorous lower bound
of the cost from a particular state to G. This function,
often referred to as an “optimistic heuristic” in the robotics
literature, is eventually replaced by actual cost values based
on the predictions and therefore does not appear in the final

cost function. The cost function can be modified to minimize
any metric as long as it can be computed as the sum of edge
costs.

E. The SBMPC ALGORITHM

The formal SBMPC algorithm can be found in [5]. How-
ever, the main component of the SBMPC algorithm is the
optimization, which will be called Sampling-Based Model
Predictive Optimization and consists of the following steps:

1) Sample Control Space: Generate a set of samples of
the control space that satisfy the input constraints.

2) Generate Neighbor Nodes: Integrate the system
model with the control samples to determine the neigh-
bors of the current node.

3) Evaluate Node Costs: Use an A∗-like heuristic to
evaluate the cost of the generated nodes based on the
desired objective (shortest distance, shortest time, or
least amount of energy, etc.).

4) Select Lowest Cost Node: The nodes are collected
in the Open List, which ranks the potential expansion
nodes by their cost. The Open List is implemented as
a heap so that the lowest cost node that has not been
expanded is on top.

5) Evaluate Edge Cost for the “Best” Node: Evaluate
each of the inequality constraints described in (6) for
the edge connecting the “best” node to the current
node. The edge cost evaluation requires sub-sampling
and iteration of the model with a smaller time step for
increased accuracy; it is therefore only computed for
the current “best”node. In the worst case the edge cost
of all of the neighbor nodes will be evaluated, which
is how A∗ typically computes cost.

6) Check for Constraint Violations: If a constraint
violation occurred, go back to step 4 and get the next
“best” node.

7) Check for Completion: Determine if the current
solution contains a path to the goal. If yes, stop. If
no, go back to step 1.

The entire algorithm is integrated into the MPC framework
by executing the first control and repeating the optimization
until the goal is reached since the completion of SBMPO
represents the calculation of a path to the goal and not the
complete traversal.

F. Benefits of SBMPC

The SBMPC approach has several benefits. First, SBMPC
is a method that can address problems with nonlinear models.
It effectively reduces the problem size of MPC by sampling
the inputs of the system, which can considerably reduce
the computation time. In addition, the method also replaces
the traditional MPC optimization phase with LPA?, an
algorithm derived from A? that can replan quickly (i.e., it
is incremental). SBMPC retains the computational efficiency
and has the convergence properties of LPA? [16], while
avoiding some of the computational bottlenecks associated
with sampling-based motion planners.

G. SBMPC Hill Climbing

The goal was to apply SBMPC to the hill climbing
problem in a computationally efficient manner. The model
input was the commanded (or desired) vehicle acceleration,
which was assumed to lie in the range [−amax amax]. Hence,
SBMPC sampled the desired vehicle accelerations and the
desired velocity of the closed-loop model of Fig. 2 varied
linearly over each sample period with the slope being the
sampled acceleration. Since SBMPC used a fairly complex
dynamic model, it was desired to minimize the number of
times the model was integrated. Although the cost function
was chosen to represent the distance traveled by the vehicle,
internally SBMPC was modified so that its ultimate objective
was to achieve a vehicle velocity at the base of the hill
that yielded at least the minimum momentum needed to
traverse the hill. This was accomplished by enforcing that
once a trajectory being considered by SBMPC reached the
bottom of the hill, the vehicle would be commanded with
amax until it either reached the hill top or failed by coming
to a zero or negative velocity before reaching the hill top.
This modification of SBMPC enabled it to avoid looking at
the potentially large number of trajectories that would result
from continuing to sample the commanded acceleration as
the vehicle traversed the hill.

Assume that a trajectory was unable to reach the hill top
and had a velocity vb at the bottom of the hill. Then, as shown
in Fig. 7, a virtual obstacle was imposed in the Position-
Velocity space to ensure that only trajectories with a hill
base velocity greater than that of the unsucessful trajectory
would be considered in later iterations of SBMPC. Note that
this virtual obstacle considers not only the velocity at the
base of the hill, but also all position-velocity combinations
that appear prior to the base and cannot achieve the desired
base velocity even if the acceleration maintains its maximum
(commanded) value amax. This adaptation allowed SBMPC
to utilize the problem physics to prevent computations of
trajectories that will definitely be infeasible based on knowl-
edge gained in a prior algorithm iteration.

Fig. 7. Virtual Obstacle used in Position-Velocity space for SBMPC hill
climbing

IV. EXPERIMENTAL RESULTS

This section describes motion planning for linear hill
climbing using the experimentally verified closed-loop model
of Section II-B. The plans were generated off line by the
modified SBMPC algorithm described in Section III.

Fig. 8 shows a modified Pioneer 3-AT at the bottom of a
hill attempting to climb the hill. Two hill climbing scenarios
are considered below. In Scenario 1 the robot starts from
rest at the bottom of the hill (the position shown in Fig. 8).
In Scenario 2 the robot starts from rest 1 m away from the
bottom of the hill as shown in Fig. 9. Scenario 1 corresponds
to a situation in which the robot is required to reverse
direction in order to move forward and hence tests the ability
of SBMPC to escape a local minimum. Scenario 2 is a more
standard situation in which the robot is required to simply
speed up to the required momentum in order to traverse the
hill. For both cases it is experimentally demonstrated that a
trajectory generated by the use of SBMPC with the closed-
loop dynamic model of Pioneer 3-AT enables the robot to
climb to the top of the hill, while a trajectory generated
without taking into the vehicle dynamics leads to the inability
of the robot to climb to the top of the hill.

Fig. 8. The modified Pioneer 3-AT at the bottom of a hill

Fig. 9. The modified Pioneer 3-AT 1 meter from the bottom of a hill

The closed-loop model of Fig. 2 has as its input the
commanded vehicle velocity profile. In these experiments,
SBMPC sampled the desired acceleration in the range [−1 1]
m/s2. Hence, the desired vehicle velocity always varied
linearly with slope equal to the sampled acceleration.

For Scenario 1 the vehicle had the initial commanded
velocity shown in Fig. 10. After approximately 5.5 s, the
robot’s actual velocity was 0 m/s, which resulted in the robot
being immobilized in the middle of the hill. Fig. 11 shows
the result for hill climbing using SBMPC, which commanded
the robot to back up and then accelerate to a velocity of
0.55 m/s at 1.5 s, a velocity maintained until approximately
2.3 s, the time at which the vehicle was positioned at the
bottom of the hill. This commanded velocity profile resulted
in the vehicle’s front wheels reaching the top of the hill at
approximately 4.1 s. A time-lapse sequence of the motion
with and without SBMPC is shown in Figure 12. SBMPC
took 0.180 s to compute the implemented trajectory on a
2.4GHz intel core 2 duo processor.

Fig. 10. Commanded vs. experimental velocity for Scenario 1 without
using SBMPC

For Scenario 2 the vehicle had the initial commanded
velocity shown in Fig. 13. After approximately 6.3 s, the
robot’s actual velocity was 0 m/s, which resulted in the robot
being immobilized before reaching the top of the hill. Fig.
14 shows the result for hill climbing using SBMPC, which
commanded the robot to accelerate to a velocity of 0.55
m/s at 3 s, the time at which the vehicle was positioned
at the bottom of the hill. As the robot climbed the hill,
it decelerated, resulting in a continual decrease in velocity.
When the vehicle’s front wheels reached the top of the hill
(at 4.7 s), the robot again accelerated to the commanded
velocity. Hence, the commanded velocity profile resulted in
the vehicle reaching the top of the hill. SBMPC took 0.003
s to compute the implemented trajectory on a 2.4GHz intel
core 2 duo processor.

V. CONCLUSION
This paper provided experimental demonstration of steep

hill climbing for an AGV using Sampling Based Model

Fig. 11. Commanded vs. experimental velocity for Scenario 1 using
SBMPC

Predictive Control (SBMPC) in conjunction with a (closed-
loop) dynamic model that includes the actuator limitations in
addition to the internal control systems (i.e., the speed con-
trollers for the motors) to reduce the model uncertainty, most
notably the uncertainty associated with the vehicle/ground
interaction. SBMPC was seen to have the ability to escape
the local minimum associated with one of the two scenarios
and also enabled the development of smooth trajectories,
specifically trajectories for which the commanded velocity
is continuous. It is conjectured here that properly designed
input sampling methodologies will be found to be more
natural and efficient kinodynamic planning algorithms as the
dynamic models increase in complexity.

To adopt SBMPC to the steep hill climbing problem,
it was required to recognize a steep hill as a potential
“traversable obstacle.” This requires information on the grade
of slopes for a given terrain type that identify a steep hill and
intelligent perception algorithms that can reliably recognize
these slopes. The slope grades can be determine by off-
line analysis and simulation using the dynamic model. The
perception problem was not considered here. It was simply
assumed that the vehicle knew the hill slope.

The motion planning research will be expanded in future
work. First, the SBMPC algorithm has been experimentally
applied to develop near minimum time trajectories that have
the necessary momentum to lift heavy loads for a single
link manipulator. The efficient computation of trajectories
that terminate with zero velocity at the desired goal position
is enabled by the development of an optimistic A? heuristic
based on the solution of a minimum time control problem for
the system q̈ = u, where umin < u < umax. This ongoing
work will be reported in a future publication. The general
approach can be used to specify the vehicle velocity at the
top of the hill in the steep hill climbing problem. Second,
it is important to consider curvilinear hill climbing. It was
not considered in the present research primarily because
the corresponding dynamic model does not exist for skid-

Fig. 12. Hill climbing time-lapse sequence for Scenario 1

steered vehicles. However, the appropriate models are under
development. The related problems of traversing mud and
high, stiff vegetation are also of interest with the main
issue being a technique for effective characterization of the
vehicle-ground interaction.

REFERENCES

[1] B. Donald, P. Xavier, J. Canny, and J. Reif. Kinodynamic motion plan-
ning. Jounal of the Assocation for Computing Machinery, 40(5):1048–
1066, November 1993.

[2] S. M. LaValle and J. M. Kuffner Jr. Randomized kinodynamic
planning. International Journal of Robotics Research, 20(5):378–400,
2001.

[3] A. A. Masoud. Kinodynamic motion planning: A novel type of
nonlinear, passive damping forces and advantages. IEEE Robotics
& Automation Magazine, pages 85–99, March 2010.

[4] D. D. Dunlap, E. G. Collins, Jr., and C. V. Caldwell. Sampling
based model predictive control with application to autonomous vehicle
guidance. Florida Conference on Recent Advances in Robotics, May
2008.

[5] D.D. Dunlap, C.V. Caldwell, and E.G. Collins. Nonlinear model
predictive control using sampling and goal-directed optimization.
IEEE Multi-conference on Systems and Control, September 2010.

[6] S. Koenig, M. Likhachev, and D. Furcy. Lifelong planning A?.
Artificial Intelligence, 155:93–146, 2004.

[7] S. C. Peters and K. Iagnemma. Mobile robot path tracking of agressive
maneuvers on sloped terrain. In IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 242–247, Nice, France,
September 2008.

[8] W. Yu, O. Y. Chuy, Jr. E. G. Collins, and P. Hollis. Analysis and
experimental verification for dynamic modeling of a skid steered
vehicle. IEEE Transactions on Robotics, 26(2):340–353, April 2010.

[9] Giorgio Rizzoni. Principles and Applications of Electrical Engineer-
ing. McGraw-Hill, 2000.

[10] J.M. Maciejowski. Predictive Control with Constraints. Prentice Hall,
Haslow, UK, 2002.

Fig. 13. Commanded vs. experimental velocity for Scenario 2 without
using SBMPC

Fig. 14. Commanded vs. experimental velocity for Scenario 2 using
SBMPC

[11] Steven M. LaValle. Rapidly-exploring random trees: A new tool for
path planning. Technical report, Iowa State University, 1998.

[12] L. E. Kavraki, P. Svestka, J. C. Latombe, and M. H. Overmars. Proba-
bilistic roadmaps for path planning in high-dimensional configuration
spaces. IEEE Transactions on Robotics & Automation, 12(4):566 –
580, June 1996.

[13] Maxim Likhachev and Anthony Stentz. R* search. Proceedings of
the National Conference on Artificial Intelligence (AAAI), pages 1–7,
Apr 2008.

[14] Stephen R. Lindemann and Steven M. LaValle. Incremental low-
discrepancy lattice methods for motion planning. International Confer-
ence on Robotics & Automation, pages 2920–2927, September 2003.

[15] S. M. LaValle. Planning Algorithms. Cambridge University Press,
2006.

[16] S Koenig, M Likhachev, and D Furcy. Lifelong planning A?. Artificial
Intelligence, 2004.

